Электроника

Как подобрать замену для биполярного транзистора

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач. И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):

Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора — выходной. Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы

I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const

Для нее также указывается семейство характеристик для разных значений тока базы:

Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано.

Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно — при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:

I_к = \beta I_б

Двигаемся дальше

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора.

И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды. Разным значениям температуры соответствуют разные кривые.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер
обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В
выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении
таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется
напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на R. Он необходим, чтобы при подаче управляющего напряжения
не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля

Главное — не превысить допустимый
ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора
hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Зачем нужно знать hfe транзистора

Знание hfe позволяет определить, насколько сильно нужно изменить входной ток для достижения желаемого выходного тока. Это может быть полезно при расчете необходимых компонентов и параметров схемы, чтобы она работала с максимальной эффективностью и стабильностью.

Кроме того, знание hfe позволяет оценить линейность работы транзистора. Если hfe для определенного транзистора варьируется в широком диапазоне, это может указывать на наличие нелинейности в его работе, что может привести к искажениям сигнала.

Измерение hfe также может помочь выявить неисправности или дефекты в транзисторе. Если hfe отличается от номинального значения, это может указывать на поломку или износ транзистора.

В целом, знание hfe транзистора является важной информацией для электронщиков и дизайнеров схем, помогая им правильно расчитывать и настраивать устройства, а также выявлять возможные проблемы или неисправности

Особенности устройства транзистора

npn транзистор включает в себя три области:

  • эмиттер;
  • базу – очень тонкую, которая изготавливается из слаболегированного полупроводника, сопротивление этой области высокое;
  • коллектор – его область больше по размерам, чем область эмиттера.

К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.

Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэrкrб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = IIm2 = IUm1 = Umб-эUm2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = IIm2 = IUm1 = Umэ-бUm2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

;

;

;

.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τфВременем включения транзистора называется τвкл = τз + τф.

Как правильно выбрать транзистор с оптимальным значением HFE

Значение HFE (от англ. «hFE» — hybrid parameter Forward transfer current ratio) показывает, во сколько раз возрастает выходной ток коллектора, если управляющий ток базы увеличивается. Этот параметр является важным при расчете схем с усилителями, переключателями и другими электронными устройствами, где требуется усиление сигнала.

Оптимальное значение HFE зависит от конкретной задачи и требований к устройству. Если требуется большое усиление, то выбирают транзистор с высоким значением HFE. В то же время, для устройств, где требуется низкое усиление или незначительное изменение выходного тока, можно выбрать транзистор с более низким значением HFE

Важно учитывать, что высокое значение HFE также связано с более высоким уровнем шума и меньшей стабильностью устройства

При выборе транзистора следует обращать внимание не только на значение HFE, но и на другие параметры, такие как максимальное рабочее напряжение, максимальный коллекторный ток и др

Важно подобрать транзистор, который будет соответствовать требованиям вашего устройства и обеспечивать его надежную и стабильную работу

Для облегчения выбора транзистора с оптимальным значением HFE часто используются таблицы, где указаны значения HFE для различных типов и моделей транзисторов. Такие таблицы можно найти в специализированных справочниках или на сайтах производителей электронных компонентов.

Транзисторы HFE
BC547 110-800
2N2222 30-300
BD139 40-250
BD140 25-160

Выбор транзистора с оптимальным значением HFE является важным шагом при проектировании электронных устройств и может влиять на их работу и производительность

Поэтому рекомендуется обратить внимание на этот параметр при выборе транзистора для конкретного приложения

How to Calculate hFE of a Transistor?

The hFE of a bipolar junction transistor (BJT) is the DC current gain, also known as beta (β). It’s defined as the ratio of the DC collector current (Ic) to the DC base current (Ib). So you can calculate it as follows:

hFE = Ic/Ib

To measure these currents and calculate hFE, you’d typically follow these steps:

1. Set up a circuit where you can control the base current (Ib) and measure the collector current (Ic). This usually involves connecting a known resistance to the base, and then applying a known voltage across it.

2. Measure the base current (Ib). This could be done by measuring the voltage across the known resistance, and then using Ohm’s law (V = IR) to calculate the current.

3. Measure the collector current (Ic). This usually involves measuring the voltage across a known resistor connected in series with the collector, and again using Ohm’s law to calculate the current.

4. Divide the collector current (Ic) by the base current (Ib) to get hFE.

Remember that the hFE can vary with the specific transistor, the temperature, and the collector current itself, so it’s not a fixed value for a given transistor type. It’s usually better to design circuits so that they don’t rely critically on a precise hFE value for proper operation.

Типы h-параметров

hfe – это коэффициент усиления по току транзистора. Он подразумевает отношение изменения выходного тока к изменению входного тока. Высокое значение hfe указывает на большое усиление тока транзистора.

hie – это входное сопротивление транзистора. Он представляет собой отношение изменения входного напряжения к изменению входного тока. Маленькое значение hie означает, что транзистор имеет высокое входное сопротивление.

hoe – это выходное сопротивление транзистора. Он показывает, как изменение выходного напряжения связано с изменением выходного тока. Малое значение hoe указывает на низкое выходное сопротивление транзистора.

hre – это параметр обратной связи транзистора. Он определяет связь между изменением выходного тока и изменением наборного тока. Большое значение hre означает, что транзистор обладает высокой обратной связью.

Знание и понимание различных типов h-параметров позволяет более полно оценить работу транзистора и применить его в соответствующих схемах.

h11 — параметр тока усиления базы

Параметр h11 является одним из основных параметров тока усиления базы и имеет размерность Ом.

Чем больше значение параметра h11, тем больше ток усиления базы, то есть транзистор более эффективно усиливает сигналы на входе. Однако большое значение параметра h11 может привести к большему потреблению энергии и нагреву транзистора.

Значение параметра h11 зависит от типа и конструкции транзистора, а также от рабочих условий. При проектировании усилительных схем необходимо учитывать значение параметра h11 для обеспечения оптимальной работы транзистора.

h21 — параметр тока усиления коллектора

Параметр h21 обычно учитывается при проектировании и выборе транзистора для схем усилителей и других устройств. Чем больше значение h21, тем больше усиление коллекторного тока может обеспечить транзистор. Коэффициент усиления может варьироваться в широком диапазоне в зависимости от типа, конструкции и характеристик транзистора.

Рекомендации по измерению hfe для получения точных результатов

1. Подготовьте приборы и оборудование: перед началом измерений убедитесь, что все необходимые приборы, провода и соединители в исправном состоянии.

2. Убедитесь в стабильности источника питания: для получения точного значения hfe необходимо использовать стабильный источник питания. Убедитесь, что напряжение источника питания не изменяется во время измерений.

3. Используйте цифровой мультиметр: для измерения hfe можно использовать цифровой мультиметр, способный измерять ток и напряжение. Подключите мультиметр к базе и эмиттеру транзистора и измерьте соответствующие значения.

4. Проверьте ток базы: перед измерением hfe необходимо убедиться, что ток базы транзистора находится в рабочем диапазоне. В противном случае, результаты измерений могут быть неточными.

5. Используйте специализированный измерительный прибор: помимо цифрового мультиметра, для измерения hfe можно использовать специализированный измерительный прибор, например, тестер транзисторов. Такие приборы предназначены специально для измерения параметров транзисторов и обеспечивают большую точность результатов.

Метод измерения Описание
Метод с общим коллектором (Эмиттерный повторитель) Измерение hfe с использованием специализированного прибора с общим коллектором
Метод с общей базой (Базовый повторитель) Измерение hfe с использованием специализированного прибора с общей базой

6. Повторите измерения несколько раз: повторные измерения позволят получить более точные и надежные результаты. Сравните полученные значения и усредните их для получения окончательного результата.

7. Учтите температурные условия: температура может оказывать влияние на значение hfe транзистора. Поэтому, при проведении измерений, убедитесь, что транзистор находится в стабильных температурных условиях.

8. Следуйте рекомендациям производителя: каждый транзистор может иметь свои особенности и рекомендации по измерению hfe. При работе с конкретным типом транзистора, всегда рекомендуется ознакомиться с указаниями производителя и следовать их рекомендациям.

Соблюдение указанных рекомендаций поможет вам получить более точные и надежные результаты при измерении hfe транзистора. Имейте в виду, что точность измерения зависит от правильной калибровки и использования приборов, а также от соблюдения всех технических требований и методик измерения.

Режимы работы биполярного транзистора

В зависимости от способа подключения р-n-переходов транзистора к внешним источникам питания он может работать в режиме отсечки, насыщения или активном режиме.

Режим отсечки

Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный p-n-переходы подключены к внешним источникам в обратном направлении (рис. 5). В этом случае через оба p-n-перехода протекают очень малые обратные токи эмиттера () и коллектора (). В этом случае говорят, что
транзистор полностью закрыт или просто закрыт.

Рис. 5 — Транзистор в режиме отсечки

Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

Режим насыщения

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения (рис. 6 ). Через эмиттер и коллектор транзистора потекут токи насыщения эмиттера () и коллектора (). Величина этих токов в много раз больше токов в режиме отсечки.

Рис. 6 — Транзистор в режиме насыщения

При этом ток коллектора перестаёт зависеть от тока базы. Он перестаёт
увеличиваться, даже если продолжать увеличивать ток базы. В этом случае
говорят, что транзистор полностью открыт или просто открыт. Чем глубже
мы уходим в область насыщения — тем больше ломается зависимость .
Внешне это выглядит так, как будто коэффициент β уменьшается.

Есть такое понятие, как коэффициент насыщения. Он
определяется как отношение реального тока базы (того, который у вас есть
в данный момент) к току базы в пограничном состоянии между активным
режимом и насыщением.

Режимы отсечки и насыщения используются при работе транзисторов в импульсных схемах и в режиме переключения.

Активный режим

При работе транзистора в активном режиме (нормальном активном режиме) эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях (рис. 7).

В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

Для токов коллектора и эмиттера выполняется соотношение:

Рис. 7 — Транзистор в активном режиме

Величина h21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h21Б=0,90…0,998. Активный режим используется при построении транзисторных усилителей.

Инверсный активный режим

Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко.
Несмотря на то, что на рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны, на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный
активный режим».

Барьерный режим

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора
закорочена с коллектором. По сути правильнее было бы говорить не о
каком-то особом режиме, а об особом способе включения. Режим тут вполне
обычный — близкий к пограничному состоянию между активным режимом и
насыщением. Его можно получить и не только закорачивая базу с
коллектором. В данном конкретном случае при таком
способе включения, как бы мы не меняли напряжение питания или нагрузку —
транзистор всё равно останется в этом самом пограничном режиме. То есть
транзистор в этом случае будет эквивалентен диоду.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и  NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

  • Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов

Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Понравилась статья? Поделиться с друзьями:
Все на Запад
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: