Действующее напряжение и амплитудное напряжение

Период, частота, амплитуда и фаза переменного тока

Преимущества переменного тока

В наших розетках протекает переменный ток. Но почему именно он, чем он лучше постоянного?

Дело в том, что только величину переменного напряжения можно изменять с помощью преобразовательных устройств – трансформаторов. А делать это приходится многократно.

Теплоэлектростанции, гидроэлектростанции и атомные электростанции находятся далеко от потребителей. Возникает необходимость передачи больших мощностей на расстояния, исчисляемые сотнями и тысячами километров. Провода линий электропередач имеют малое сопротивление, но все же оно присутствует. Поэтому ток, проходя по ним, нагревает проводники. Более того, за счет разности потенциалов в начале и конце линии, к потребителю приходит меньшее напряжение, чем было на электростанции.

Бороться с этим явлением можно, либо уменьшив сопротивление проводов, либо снизив значение тока. Уменьшение сопротивления возможно только с увеличением сечением проводов, а это дорого, а порой – невозможно технически.

А вот уменьшить ток можно, увеличив значение напряжения линии. Тогда при передаче одной и той же мощности ток по проводам пойдет меньший. Уменьшаться потери на нагрев проводов.

Технически это выглядит так. От генераторов переменного тока электростанции напряжение подается на повышающий трансформатор. Например, 6/110 кВ. Далее по линии электропередач напряжением 110 кВ (сокращенно – ЛЭП-110 кВ) электрическая энергия отправляется до следующей распределительной подстанции.

Если эта подстанция предназначена для питания группы деревень в районе, то напряжение понижается до 10 кВ. Если при этом нужно отправить весомую часть принятой мощности энергоемкому потребителю (например, комбинату или заводу), могут использоваться линии напряжением 35 кВ. На узловых подстанциях для разделения напряжения между потребителями, находящихся на разном удалении и потребляющими разные мощности, используются трехобмоточные трансформаторы. В нашем примере это – 110/35/6 кВ.

Теперь напряжение, полученное на сельской подстанции, претерпевает новое преобразование. Его величина должна стать приемлемой для потребителя. Для этого мощность проходит через трансформатор 10/0,4 кВ. Напряжение между фазой и нулем линии, идущей к потребителю, становится равным 220 В. Оно и доходит до наших розеток.

Думаете, что это все? Нет. Для полупроводниковой техники, являющейся начинкой наших телевизоров, компьютеров, музыкальных центров эта величина не подойдет. Внутри них 220 В понижаются до еще меньшего значения. И преобразуется в постоянный ток.

Вот такая метаморфоза: передавать на большие расстояния лучше переменный ток, а нужен нам, в основном – постоянный.

Еще одно достоинство переменного тока: проще погасить электрическую дугу, неизбежно возникающую между размыкающимися контактами коммутационных аппаратов. Напряжение питания изменяется и периодически переходит через нулевое положение. В этот момент дуга гаснет самостоятельно при соблюдении определенных условий. Для постоянного напряжения потребуется более серьезная защита от подгорания контактов. Но при коротких замыканиях на постоянном токе повреждения электрооборудования от действия электрической дуги серьезнее и разрушительнее, чем на переменном.

Какие коэффициенты характеризуют переменное напряжение

Помимо базовых параметров переменного тока, в электротехнике принято производить измерения электросигналов, включая выходные напряжения выпрямителей и импульсы различной формы.

Амплитудное значение напряжения

Под амплитудным или пиковым напряжением подразумевают максимальный показатель U за один период синусоиды:

Um = max(|u(t)|)

Для измерения данного параметра обычно используют вольтметр импульсного типа или осциллограф.

Мгновенное значение тока

Параметр обозначает силу тока или напряжение в конкретный временной момент (u(t), i(t)). В зависимости от динамики электрического сигнала, для определения мгновенных значений могут применяться малоинерционные вольтметры, а также шлейфовые или электронно-лучевые осциллографы.

Среднее значение

Под средним значением синусоидально изменяющейся величины понимают ее среднее значение за полпериода.

Среднее значение тока:

т. е. среднее значение синусоидального тока составляет 2/π = 0,638 от амплитудного. Аналогично, Eср = 2Ем/π ; Ucp = 2Uм/π.

Среднеквадратичное значение напряжения

Итак, что же у нас получилось? Как и постоянное напряжение, так и переменное напряжение  зажигали одну и ту же лампочку, которая кушала одну и ту же мощность.  Значит эта осциллограмма

и вот эта осциллограмма

Чем то похожи? Но чем??? 

Среднеквадратичноезначениенапряжения — это такое  значение переменного напряжения, при котором нагрузка потребляет столько же силы тока, как и при постоянном напряжении.  То есть лампочка у нас потребляла 1,71 Ампер и при постоянном токе и при переменном.  То есть, в двух этих случаях, мощность, которую потребляла лампочка, была одинакова.

Также среднеквадратичное напряжение еще называют действующим или эффективным значением напряжения. С помощью несложных умозаключений, инженеры-электрики пришли к выводу действующее (оно же среднеквадратичное) напряжение синусоидального сигнала  любой частоты равняется максимальной его амплитуде, поделенной  на корень из двух

Стоп! Мы ведь не разобрали, что такое максимальная амплитуда! На осциллограмме максимальная амплитуда выглядит примерно вот так:

Если даже посчитать по клеточкам и посмотреть, чему равняется одна клеточка по вертикали (смотрим внизу слева, она равняется 5 Вольт), то Umax = 17 Вольт. Делим это значение на корень из двух. Я беру это значение как 1,41. Получаем, что среднеквадратичное значение равняется 17/1,41=12,06 Вольт. Ну что, все верно

Значит, когда нам говорят, что напряжение в розетке равняется 220 Вольт, то мы то знаем, что на самом деле это среднеквадратичное напряжение.  Максимальная амплитуда этих  220 Вольт равняется 220х1,41=310 Вольт.

Где же  среднеквадратичное напряжение и максимальная амплитуда сигнала прячутся на табличке измерений? Да вот  же они!

Vk — это и есть среднеквадратичное напряжение этого сигнала.

Ma — это  и есть Umax.

Конечно, 16,6/1,41=11,8  Вольт, а он пишет 12,08 Вольт.

Средневыпрямленное значение

Величина определяется как взятое по модулю среднеарифметическое всех мгновенных значений напряжения. Для одного периода средневыпрямленная величина равна сумме площадей сверху и снизу оси времени. Хотя параметр не находит практического применения, именно он фиксируется по факту большинством измеряющих устройств магнитоэлектрического принципа действия, несмотря на то, что их шкалы имеют градацию для действительных значений. При этом эффективные и средневыпрямленные значения оказываются близки друг к другу только в случае синусоидального напряжения.

Значение переменного тока (ЭДС, напряжения), соответствующее данному моменту времени, называется мгновенным значением

i, e и u – общие выражения для мгновенного тока, ЭДС и напряжения.

Мгновенное значение тока, как и значение амплитуды, можно легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему моменту времени, проведите вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной линии будет определять значение тока в этот момент, т.е. мгновенное значение тока.

Очевидно, что мгновенное значение тока будет равно нулю через время T/2 от начальной точки кривой, а через время T/4 – его амплитудное значение. Ток также достигает своего амплитудного значения, но в противоположном направлении, через время, равное 3/4 T.

Таким образом, график показывает, как ток в цепи изменяется во времени и что в любой момент времени существует только одно конкретное значение как величины, так и направления тока. Значение тока в данной точке цепи в данный момент времени будет точно таким же в каждой другой точке этой цепи.

Количество полных периодов, которые ток делает за 1 секунду, называется частота переменного тока и обозначается латинской буквой f.

Для определения частоты переменного тока, т.е, сколько периодов переменного тока происходит за 1 секундуразделить 1 секунду на время одного периода f = 1/T. Зная частоту переменного тока, мы можем определить его период: T = 1/f

Частота переменного тока измеряется с помощью единицы, называемой герц.

Если у нас есть переменный токЧастота переменного тока равна 1 герцу, а период переменного тока составляет 1 секунду. И наоборот, если мы имеем период переменного тока, равный 1 секунде, то частота такого тока будет равна 1 герцу.

Итак, мы установили параметры переменного тока — период, амплитуда и частота, — которые позволяют нам отличать друг от друга различные переменные токи, ЭДС и напряжения и при необходимости строить их графики.

При определении сопротивления различных цепей переменному току еще одной вспомогательной переменной, характеризующей переменный ток, является так называемая угловая частота или круговая частота.

Угловая частота обозначается ω и связана с частотой f соотношением ω = 2πf

Давайте объясним эту взаимосвязь. При построении графика переменной ЭДС мы увидели, что за один полный оборот рамы происходит полный цикл изменения ЭДС. Другими словами, чтобы совершить один оборот, т.е. повернуться на 360°, рамке требуется время, равное одному периоду, или T секунд. За 1 секунду кадр совершает поворот на 360°/T. Таким образом, 360°/T – это угол, на который поворачивается кадр за 1 секунду, и представляет собой скорость вращения кадра, которая называется угловая или вращательная скорость.

Однако, поскольку период T связан с частотой f соотношением f=1/T, круговая скорость также может быть выражена в терминах частоты и составляет ω =360°f.

Таким образом, мы приходим к выводу, что ω = 360°f. Однако для удобства использования круговой частоты во всех видах расчетов, угол 360°, соответствующий одному обороту, заменяется его радиальным выражением, равным 2π радиан, где π=3.14. Таким образом, окончательно получаем ω = 2πf. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), мы должны умножить частоту в герцах на постоянное число 6,28.

– мгновенное значение тока ;

Свойства электромагнитных волн

Электромагнитная волна – это изменяющееся во времени и распространяющееся в пространстве электромагнитное поле.

Существование электромагнитных волн было теоретически предсказано английским физиком Дж. Максвеллом в 1864 году. Электромагнитные волны были открыты Г. Герцем.

Источник электромагнитной волны – ускоренно движущаяся заряженная частица – колеблющийся заряд.

Важно!
Наличие ускорения – главное условие излучения электромагнитной волны. Интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд

Источниками электромагнитных волн служат антенны различных конструкций, в которых возбуждаются высокочастотные колебания.

Электромагнитная волна называется монохроматической, если векторы ​\( \vec{E} \)​ и \( \vec{B} \)​ совершают гармонические колебания с одинаковой частотой (частотой волны).

Длина электромагнитной волны: ​\( \lambda=cT=\frac{c}{\nu}, \)​

где ​\( c \)​ – скорость электромагнитной волны, ​\( T \)​ – период, ​\( \nu \)​ – частота электромагнитной волны.

Свойства электромагнитных волн

  • В вакууме электромагнитная волна распространяется с конечной скоростью, равной скорости света 3·108 м/с.
  • Электромагнитная волна поперечная. Колебания векторов напряженности переменного электрического поля и магнитной индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости волны.
  • Электромагнитная волна переносит энергию в направлении распространения волны.

Важно!
Электромагнитная волна в отличие от механической волны может распространяться в вакууме. Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени

Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени.

Обозначение – ​\( I \)​, единица измерения в СИ – ватт на квадратный метр (Вт/м2).

Важно!
Плотность потока излучения электромагнитной волны от точечного источника убывает обратно пропорционально квадрату расстояния от источника и пропорциональна четвертой степени частоты. Электромагнитная волна обладает общими для любых волн свойствами, это:

Электромагнитная волна обладает общими для любых волн свойствами, это:

  • отражение,
  • преломление,
  • интерференция,
  • дифракция,
  • поляризация.

Электромагнитная волна производит давление на вещество. Это означает, что у электромагнитной волны есть импульс.

Закон Ома для участка цепи

Какой ученый променял бильярд на физику?Георг Ом рос в небогатой семье. Также он был довольно азартным человеком, любил играть в бильярд в компании друзей. В университетские годы Ом был лучшим игроком в бильярд среди студенческой молодежи, показывал прекрасные результаты в конькобежном спорте.Но его очень манили точные науки: физика и математика. Однажды он смог собрать всю свою волю «в кулак» и начать проводить опыты в лаборатории обычной школы, где работал учителем. И так он окончательно вжился в статус ученого-физика. После этого он играл в бильярд только для получения удовольствия, а не использовал его как способ заработка.

Дальше мы с вами поговорим о напряжении на элементах электрической цепи, и, в частности, на источнике тока. Поэтому вспомним, что такое напряжение из темы «Законы постоянного тока». Напряжение – физическая величина, которая показывает, какую работу сторонние силы должны приложить, чтобы перенести заряд от одной точки до другой.

Так как у источника тока имеется внутреннее сопротивление, значит, внутри него также будет и . Чтобы найти его, воспользуемся законом Ома — умножим внутреннее сопротивление источника тока r на сам ток I и получим:

Ur = Ir.

Также мы можем найти напряжение, которое будет выделяться на внешней цепи. Для этого снова умножим ток I на общее сопротивление цепи R:

UR = IR.

Оказывается, что не вся энергия источника тока уходит в цепь. Как раз таки та часть энергии, которая уходит на преодоление внутреннего сопротивления, и будет характеризовать потери. Тогда мы можем записать еще одну формулу для нахождения ЭДС источника тока:

ε = UR+ Ur , гдеε – ЭДС источника тока (В);UR – напряжение на самой электрической цепи (В);Ur – напряжение внутри источника тока (В). 

Теперь давайте подставим вместо напряжений полученные формулы через токи и сопротивления и выразим силу тока. Так мы получим закон Ома для полной цепи: 

\(I=\frac{ε}{R + r}\) , гдеI – ток в цепи (А);ε – ЭДС источника тока (В);R – сопротивление в цепи (Ом);r – внутреннее сопротивление источника (Ом).

Сила тока в цепи с заданным источником тока (при неизменной ЭДС и с постоянным внутренним сопротивлением) зависит только от сопротивления внешней цепи R.

Где самое большое сопротивление в теле человека?Самое большое электрическое сопротивление на теле человека — поверхность верхнего рогового слоя кожи человека. Оно может достигать 40000–100000 Ом. Но это не значит, что можно хвататься за оголенные провода голыми руками! Этого сопротивления далеко не достаточно, чтобы защитить человека от опасного электрического тока.Резко уменьшают сопротивление человека потливость кожного покрова, переутомление, нервное возбуждение. Значение снижается до 800–1000 Ом. Поэтому даже самое небольшое напряжение может вызвать ожог кожи.

Задачи на данную тему встречаются в №12 ЕГЭ. Давайте рассмотрим один пример.Задача. Найдите внутреннее сопротивление источника ЭДС, если сопротивление в цепи R = 4 Ом, а ЭДС ε=10 В. Сила тока в цепи 2 А.Решение.Воспользуемся законом Ома для полной цепи и выразим из него внутреннее сопротивление источника ЭДС:\(I=\frac{ε}{R + r}\),\(r=\frac{ε}{I}-R=\frac{10}{2}-4=1\) (Ом).Ответ: 1 Ом

Переменный ток. Производство, передача и потребление электрической энергии

Переменным называется ток, изменяющийся по величине и направлению по гармоническому закону.

Переменный ток представляет пример вынужденных электромагнитных колебаний. Для описания переменного электрического тока используют следующие величины:

• мгновенное значение силы тока – i;

• мгновенное значение напряжения – u;

• амплитудное значение силы тока – Im;

• амплитудное значение напряжения –Um.

Цепь переменного тока представляет собой колебательный контур, к которому приложена внешняя синусоидальная ЭДС. В цепь переменного тока могут включаться различные нагрузки: резистор, катушка, конденсатор.

Активное сопротивление

Проводник, преобразующий всю энергию электрического тока во внутреннюю, называется активным сопротивлением ​\( R \)​. (Эту величину мы раньше называли сопротивлением.) Активное сопротивление зависит от материала проводника, его длины и площади поперечного сечения и не зависит от частоты переменного тока.

В проводнике с активным сопротивлением колебания силы тока и напряжения совпадают по фазе:

Мгновенное значение мощности: ​\( p=i^2R, \)​

среднее значение мощности за период: ​\( \overline{p}=\frac{I_m^2R}{2}. \)​

Действующим значением силы переменного тока ​\( I_Д \)​ называют значение силы постоянного тока, который в том же проводнике выделяет то же количество теплоты , что и переменный ток за то же время:

Действующим значением напряжения переменного тока ​\( U_Д \)​ называют значение напряжения постоянного тока, который в том же проводнике выделяет то же количество теплоты, что и переменный ток за то же время:

Для цепи с активным сопротивлением выполняется закон Ома для мгновенных, амплитудных и действующих значений.

Индуктивное сопротивление

Катушка в цепи переменного тока имеет большее сопротивление, чем в цепи постоянного тока. В такой цепи колебания напряжения опережают колебания силы тока по фазе на ​\( \pi/2 \)​. Колебания силы тока и напряжения происходят по закону:

Амплитуда силы тока в катушке:

где ​\( L \)​ – индуктивность катушки.

Индуктивным сопротивлением ​\( X_L \)​ называют физическую величину, равную произведению циклической частоты на индуктивность катушки:

Индуктивное сопротивление прямо пропорционально частоте. Физический смысл индуктивного сопротивления: ЭДС самоиндукции препятствует изменению в ней силы тока. Это приводит к существованию индуктивного сопротивления, уменьшающего силу тока.

Для цепи с индуктивным сопротивлением выполняется закон Ома.

Однофазный переменный ток

Предыдущая | Содержание | Следующая >>ГЛАВА IV ОДНОФАЗНЫЙ ПЕРЕМЕННЫЙ ТОК

§ 48. ГЕНЕРАЦИЯ ПЕРЕМЕННОЙ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ

Переменный ток – это электрический ток, величина и направление которого периодически меняются.

Переменный ток вырабатывается электромеханическими генераторами. Работа генератора основана на явлении электромагнитной индукции.

Рассмотрите принцип работы генератора переменного тока и используйте простейшую схему (рис. 46), чтобы объяснить, как генерируется переменная электроэнергия, под действием которой в цепи протекает переменный ток.

Магнитное поле генератора переменного тока индуцируется электромагнитом, по обмоткам которого протекает постоянный ток от внешнего источника электроэнергии. Катушка 3 из медного провода помещается в магнитное поле, закрепляется на оси 2 и вращается вокруг нее с помощью двигателя. Концы 4 и 7 катушки соединены с медными контактными кольцами 6, изолированными от оси. К кольцам прикреплены неподвижные щетки 5, к которым подключен электрический потребитель.

Известно, что величина индуктированной электродвижущей силы, возникающей в проводнике при прохождении через магнитный поток, зависит от магнитной индукции B, рабочей длины l

скорость и движение проводника в магнитном поле, а также синус угла между направлением движения проводника и направлением магнитного потока:

На рисунке 47 показаны различные положения катушки, вращающейся в однородном магнитном поле осциллятора с равномерной скоростью. В положении 1 катушка движется вдоль магнитного потока. Поэтому катушка не пересекает магнитных линий, угол ά между направлением движения проводника и магнитным потоком равен нулю, а sin 0° = 0. Следовательно, электродвижущая сила e = B

Виток, вращаясь по кругу, через некоторое время повернется на угол ά =90° и займет положение 2. При этом пересечется наибольшее число магнитных линий. Электродвижущая сила, индуцированная в катушке, будет наибольшей, sin 90°= 1 и e= Blν .

Из положения 2 катушка, продолжая вращаться, займет положение 3 и срежет магнитный поток под углом ά =180°. Индуцированная электродвижущая сила будет постепенно уменьшаться от положения 2 к положению 3 и будет равна нулю в положении 3, так как катушка не будет обрезать магнитный поток; sin 180°= 0 и e

=Blν . . sin 180°=0.

Используя правило правой руки, определите направление электродвижущей силы в катушке при ее перемещении в магнитном поле вдоль контура из положения в положение 3. Электродвижущая сила будет направлена от нас в сторону от плоскости рисунка. Предположим, что направление электродвижущей силы положительное.

Затем спираль будет последовательно вращаться до положения 4, 5 и вернется в положение 1

. Электродвижущая сила в катушке будет постепенно увеличиваться и станет наибольшей в положении 4 (ά = 270°), затем электродвижущая сила уменьшится и снова станет нулевой в положении 5

(sin 360° = 0). Затем весь процесс изменения э.ф. будет повторен.

Используя правило правой руки, можно увидеть, что при втором полуобороте катушки электродвижущая сила, генерируемая в катушке, изменит свое направление и будет направлена в нашу сторону. Предполагается, что направление электродвижущей силы отрицательное.

График изменения электродвижущей силы, возникающей в катушке, в зависимости от угла ее поворота в магнитном поле показан на рисунке 48.

Электродвижущая сила (рис. 48), которая изменяется по синусоиде, называется синусоидальной силой. синусоидальный

. Под действием этой электродвижущей силы в электрических цепях протекает синусоидально изменяющийся ток. Предыдущая | Содержание | Следующая >>

Читайте далее:

  • Значение слова ЭЛЕКТРОТЕХНИКАЦИЯ. Что такое ЭЛЕКТРОТЕХНИКА?.
  • 1 Понятие электромагнитного поля и его различные проявления. Материальность – Работа в школе.
  • Шаговые двигатели: свойства и практические схемы управления. Часть 2.
  • Полное сопротивление цепи переменного тока – Основы электроники.
  • Урок 7 Свободные и вынужденные электромагнитные колебания. колебательный контур – физика – 11 класс – Русская электронная школа.
  • Векторное и скалярное управление преобразователями частоты – принцип работы, система управления.
  • Среднеквадратичное значение переменного тока следующее. Каково среднеквадратичное значение переменного тока?.

В чем заключается принцип работы переменного тока

Английская аббревиатура АС (Alternating Current) обозначает ток, меняющий на временных отрезках свое направление и величину. Отрезок синусоиды «~» – его условная маркировка на приборах. Применяется также нанесение после этого значка и других характеристик.

Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения.

Следует отметить особенности изменения на левом графике, выполненном для однофазного тока, величины и направления напряжения с осуществлением перехода на ноль за определенный промежуток времени Т. На одну треть периода выполняется смещение трех синусоид при трехфазном токе на другом графике.

Отметками «а» и «б» обозначены фазы. Любой из нас имеет представление о наличии в обычной розетке 220В. Но для многих будет открытием, что максимальное или именуемое по-другому амплитудным значение больше действующего на величину равную корню из двух и составляет 311 Вольт.

Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. На рисунке обратное направление – это область графика ниже нуля.

Переходим к частоте. Под этим понятием подразумевают отношение периодов (полных циклов) к условной единице временного отрезка . Данный показатель измеряется в Герцах. Стандартная европейская частота – 50, в США применяемый норматив – 60Г.

Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Переменный ток присутствует при прямом и в розетках. По какой причине здесь отсутствует постоянный ток? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Эта методика остается лучшим способом передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Номинальное напряжение, которое подается мощными генераторами электростанций, на выходе составляет порядка 330 000-220 000 Вольт. На подстанции, расположенной в зоне потребления, происходит трансформация данной величины до показателей 10 000В с переходом в трехфазный вариант 380 Вольт. и на вашу квартиру попадает напряжение однофазного типа. Напряжение между нулем и фазой составит 220 В, а в щите между разными фазами подобный показатель равняется 380 Вольт.

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w. Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t=0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w. Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток

Каждый из этих токов синусоидален и может быть представлен уравнением

Результирующий ток также будет синусоидален:

Определение амплитуды

t=0.w

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

Построение векторной диаграммы в масштабе позволяет определить значения

«>

Взаимоиндукция

Если собрать модуль из двух катушек, в определенных условиях можно наблюдать явление взаимной индукции. Элементарное измерение покажет, что по мере увеличения расстояния между элементами уменьшается магнитный поток. Обратное явление наблюдается по мере уменьшения зазора.

Чтобы находить подходящие компоненты при создании электрических схем, необходимо изучить тематические вычисления:

  • можно взять для примера катушки с разным количеством витков (n1 и n2);
  • взаимоиндукция (M2) при прохождении по первому контуру токаI1 будет вычислена следующим образом:

после преобразования этого выражения определяют значение магнитного потока:

для расчета эдс электромагнитной индукции формула подойдет из описания базовых принципов:

E2 = – n2 * ΔF/ Δt = M 2 * ΔI1/ Δt

При необходимости можно найти по аналогичному алгоритму соотношение для первой катушки:

E1 = – n1 * ΔF/ Δt = M 1 * ΔI2/ Δt.

Следует обратить внимание, что в этом случае значение имеет сила (I2) во втором рабочем контуре

Синусоида действующего и амплитудного напряжения

Понятно, что данный материал в большей степени ориентирован на простую аудиторию, у которой не то, что осциллографа нет, даже мультиметр наверняка не у каждого есть. Поэтому все примеры будут браться из среды программы Electronics Workbench, доступной каждому.

И первое, что нам нужно посмотреть — это синусоиду напряжения фазы из розетки. Для этого в программе отрисуем трехфазную сеть и подключим осциллограф к одной из фаз:

Как видно при показании вольтметра 219,4 Вольт между одной из фаз и PEN проводником, осциллограф показал синусоиду с амплитудой 309,1 Вольт. Это значение напряжения называется максимальным (амплитудным). А 219,4 Вольт, которые показывает вольтметр — это действующее напряжение. Его также называют среднеквадратичным или эффективным. И прежде чем перейти к рассмотрению данной особенности, кратко, простыми словами пройдемся по отрисованной схеме трехфазной сети и разберемся в природе синусоиды.

Начнем со схемы:

  • Слева на право — три источника переменного напряжения с фазовыми углами 0, 120, 240 градусов и соединенными звездой.
  • Резистор 4 Ом — это заземление нейтрали трансформатора.
  • Резисторы по 0,8 Ом — условное сопротивление проводов, зависящее от сечения провода и длины линии.
  • Резисторы 15, 10 и 20 Ом — нагрузка потребителей по трем фазам.
  • К одной из фаз подключен осциллограф, показывающий амплитуду 309,1 Вольт.

Теперь рассмотрим синусоиду. Переменное напряжение в отличие от постоянного, график которого прямая на осциллографе, непрерывно изменяется как по величине, так и по направлению. Причем изменения эти происходят периодически, то есть точно повторяются через равные промежутки времени.

Ток переменный и постоянный: разница и особенности

Отличие переменного тока от постоянного, можно понять исходя из определений. Для того чтобы лучше разобраться в принципе работы и особенностях, необходимо знать следующие факторы.

Основные отличия:

  • Движение заряженных частиц;
  • Способ производства.

Переменным, называют такой ток, в котором заряженные частицы, способны изменять направление движения и величину в определенное время. К главным параметрам переменного тока относят его напряжение и частоту.

В настоящее время, общественные электрические сети и различные объекты, используют переменный ток, с определенным напряжением и частотой. Данные параметры определяются оборудованием и устройствами.

Направление движения и частота заряженных частиц в постоянном токе неизменны. Данный ток для питания используют различные бытовые устройства, такие как телевизоры и компьютеры.

В связи с тем, что переменный ток, проще и экономичнее по способу производства и передачи на различные расстояния, он стал основой электрификации объектов. Производят переменный ток на различных электростанциях, с которых посредством проводников, то поступает к потребителю.

Постоянный ток, получают при преобразовании переменного тока или путем химических реакций (например, щелочная батарейка). Для преобразования, используют трансформаторы тока.

Трехфазный ток

Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток
. Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.

Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).

Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.

Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.

Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.

По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».

В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.

«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.

Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.

Понравилась статья? Поделиться с друзьями:
Все на Запад
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: