Как найти sin фи в электротехнике

Как найти косинус фи в трехфазной сети

Косинус фи в электротехнике – это коэффициент можности

На бирках (шильдиках) электродвигателей обязательно указана его мощность, измеряемая в ваттах, и вот такой значок «cosφ». Что обозначает косинус фи в электротехнике – это коэффициент мощности. И определяется он соотношением мощности активной к полной. При этом чем выше данный коэффициент, то есть приближается к единице, тем лучше. Потому что в данном случае реактивная мощность будет равна нулю, а, значит, будет уменьшаться потребляемое значение, что приведет к экономии электроэнергии.

Поэтому чтобы разобраться в косинусе фи, необходимо сначала разобраться со всеми этими мощностями.

Мощности в электродвигателе

Итак, полная мощность с единицей измерения вольт-ампер (ВА) – это комплексная величина, состоящая из активной мощности (действительной) и реактивной (мнимой). Если рассматривать полный показатель по формуле, то можно это отобразить вот так:

N=√Nа²+Nр²

Или вот так:

N=IxU.

Теперь рассмотрим составляющие первой формулы. Активная мощность действует только на активных сопротивлениях, то есть она присутствует при определенных нагрузках, а, точнее сказать, когда электрический двигатель работает. Вычисляется она вот по этой формуле:

Nа=IxUxcosφ.

Что значит активное сопротивление? Здесь необходимо понимать, что в цепях переменного тока сопротивление выше, чем в цепях постоянного тока. Это связано со многими факторами. К примеру, это вихревые токи, которые образуются в цепи, это электромагнитное поле, это близость расположения проводников и так далее. Именно поэтому сопротивление в сетях переменного тока называют активным, а в сетях постоянного тока омическим.

https://youtube.com/watch?v=dkouRcAJFcM

Теперь, что касается реактивной мощностной составляющей. Во-первых, эта величина измеряется в вольт ампер реактивный (вар). Во-вторых, это своеобразная накопительная мощность, которая накапливается в проводниковых сетях, а потом отдается обратно в сеть. Кстати, эта величина может быть положительной или отрицательной.

Причинами появления реактивной составляющей могут быть приборы, которые выдают емкостную или индуктивную нагрузку. Рассчитывают этот показатель вот по этой формуле:

Nр=IxUx sinφ.

Если рассматривать полезность реактивной мощности, то она не расходуется на прямые нужды потребителя. К примеру, в электрических двигателях она не преобразуется из электрической в механическую. И хотя полезной нагрузки эта мощность не несет, без нее не может быть осуществлена полезная работа. И все же производители стараются данный показатель уменьшить, потому что повышение активной составляющей приводит к снижению реактивной, отсюда и низкий КПД оборудования или сети.

Косинус фи

Как уже было сказано выше, значение косинуса фи в электротехнике – это величина, характеризующая степень линейности нагрузки. Для нее тоже существует формула:

cosφ = Nа / (√3*U*I).

Что касается величины «cosφ», то ее увеличение преследует несколько целей.

  • Основная цель – экономия потребления электрического тока.
  • Соответственно экономия цветных металлов, которые используются в обмотках электромотора.
  • Максимальное использование полезной мощности агрегата.

Хотелось бы отметить вот какой момент – производственные электрические сети всегда находятся в недогруженном состоянии. Почему? Все дело в том, что не все электродвигатели постоянно работают под нагрузкой. Любой асинхронный двигатель на холостом ходе имеет косинус фи, равный приблизительно значению 0,2. При нагрузке косинус фи увеличивается до 0,85. Почему так происходит? Все опять упирается в активную и реактивную мощности. Первая при холостом ходе мотора приблизительно составляет 30%, вторая 15%. Как только нагрузка на электрический двигатель увеличивается, тут же поднимается активная составляющая, а реактивная снижается практически до нуля. Поэтому основное требование увеличения «cosφ» – это работа предприятия с полной нагрузкой.

Мероприятия по увеличению косинуса фи

Чтобы увеличить косинус фи, можно воспользоваться двумя способами:

  • Естественным путем без установки компенсирующих приборов и устройств.
  • Искусственным путем с установкой компенсирующих агрегатов.

В первом случае необходимо использовать мероприятия, с помощью которых регулируются технологические процессы. Таким методом добивается оптимальный режим расходования потребляемой электроэнергии. Ко вторым, к примеру, можно отнести замену асинхронных электродвигателей синхронными, в которых реактивная мощность практически равна нулю. Она присутствует, но только на стадии запуска мотора.

Применение косинуса фи в электротехнике

Косинус фи (cos φ) — это важный параметр в электротехнике, который используется для измерения коэффициента мощности (КПД) в электрических системах. КПД является показателем эффективности использования электрической энергии и влияет на энергетическую эффективность и стабильность работы электрических устройств и систем.

Косинус фи определяется как отношение активной мощности (P) к полной мощности (S) в электрической цепи. Активная мощность — это та часть мощности, которая используется для выполнения работы, например, для привода двигателя или освещения помещения. Полная мощность — это сумма активной и реактивной мощностей, где реактивная мощность связана с хранением и передачей электрической энергии в индуктивных и емкостных элементах.

Косинус фи дает представление о том, насколько эффективно используется электрическая энергия в системе. Значение косинуса фи может варьироваться от 0 до 1, где 1 означает идеальное использование энергии, а более низкие значения указывают на наличие реактивных элементов в системе, которые не выполняют работу и потребляют энергию без использования.

Применение косинуса фи в электротехнике включает:

  1. Оптимизацию энергопотребления: Измерение косинуса фи в электрических системах позволяет определить эффективность использования электрической энергии и выявить неэффективные компоненты или устройства.
  2. Коррекцию фазы: Применение косинуса фи позволяет корректировать фазу в электрической системе, чтобы минимизировать потери энергии и повысить эффективность работы системы.
  3. Учет реактивной мощности: Косинус фи используется для измерения реактивной мощности, которая может вызывать проблемы в электрической системе, такие как перегревы, потеря напряжения и нестабильность работы.

В целом, косинус фи является важным параметром, который позволяет оценить энергетическую эффективность и оптимизировать использование электрической энергии в электротехнике. Регулярное измерение косинуса фи помогает повысить эффективность и стабильность работы электрических систем и устройств.

Что такое реактивная мощность простыми словами?

Мощность, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение, называется реактивной мощностью. Она равна произведению действующих значений тока и напряжения на синус угла сдвига фаз между ними (sin φ). Таким образом, реактивная мощность является величиной характеризующей нагрузку.

В чем разница между активной и реактивной мощности?

Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной. Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока.

Что такое активная мощность?

Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии.

Как рассчитывается активная реактивная и полная мощность трехфазной цепи?

Активная мощность трехфазной цепи равна сумме активных мощностей ее фаз: Реактивная мощность трехфазной цепи равна сумме реактивных мощностей ее фаз: Очевидно, что в симметричной трехфазной цени Тогда Мощность одной фазы определяется по формулам для однофазной цепи….

Как определяется полная мощность трехфазной цепи?

Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3·Uф·Iф·cosфи =3·Uф·I·cosфи. При соединении в треугольник P=3·Uф·Iф·cosфи=3·U·Iф·cosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник.

Как найти коэффициент мощности трехфазной цепи?

P=U*I*sinφ, где U и I — действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними

Что такое коэффициент Фи?

Коэффициент мощности cos фи (φ) определяется как отношение полезной мощности к полной. Математически это определение часто записывают в виде кВт/кВА, где числитель – активная (действительная) мощность, а знаменатель – кажущаяся (активная + реактивная, полная) мощность.

Как найти коэффициент мощности цепи?

Определение коэффициента мощности PF = P (кВт)/S (кВА), где: P = активная мощность; S = полная мощность. Коэффициент мощности нагрузки, которая может являться электроприемником (ЭП) или совокупностью таких ЭП (например, вся система), задается отношением P/S, т.

Как определяется коэффициент мощности cos φ?

Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра). Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением.

Физические аналогии

Предположим, нам надо заполнить водой резервуар, выливая по одному ведру за раз. Единственный способ сделать это – подняться по лестнице с ведром воды и вылить ведро в емкость. Вылив ведро, мы должны спуститься по лестнице за следующим ведром. За этот цикл (подъем по лестнице и спуск) мы проделали определенную работу, причем энергия, затраченная на подъем, больше энергии, требуемой для спуска.

Если бы мы поднялись по лестнице с пустым ведром и с ним же спустились, то мы не совершили бы никакой работы. Но энергия для подъема и спуска осталась бы такой же. И хотя мы не совершали никакой полезной работы, мы затратили некоторое количество энергии.

Таким образом, энергия, необходимая на подъем и спуск по лестнице с пустыми руками, требует реактивной мощности, но не полезной. А энергия, затраченная на подъем с ведром воды и спуск с пустым ведром, требует как активной мощности, так и реактивной.

Аналогия может быть распространена и на трехфазные системы, если поставить три лестницы к резервуару и заставить трех человек подниматься по ним в такой последовательности, чтобы наполнение резервуара было непрерывным.

cosφ | Советы электрика

Мне много приходит писем от моих читателей и посетителей сайта, спрашивают совета, интересуются как лучше поступить в том или ином случае когда возникают затруднения в электрике для дома.

Частенько задают вопросы и по теории электротехники. Я конечно не профессор и досконально всего не знаю по теории, но в свое время у меня были хорошие преподователи по ТОЭ и хорошо “вдолбили” мне базовые знания, да я особо и не сопротивлялся)))

Поэтому на несложные вопросы могу ответить что и делаю сейчас.

В одном из писем меня спрашивают: “Почему у ассинхронного двигателя на холостом ходу низкий косинус фи?”

Отвечаю:

Потому что вся энергия, которую двигатель забирает из сети расходуется на 99% на создание магнитного поля внутри движка- намагничивание статора, создание вращающегося магнитного поля, в роторе наводится ЭДС, происходит сцепление двух магнитных полей и т.д.

Это- реактивная энергия.

Вспомним формулу косинуса фи:

По сути косинус фи (cosφ) служит показателем потребления реактивной энергии.

Сosφ показывает соотношение активной мощности к полной.

Если активная энергия (Р) расходуется на создание полезной работы, например электродвигатель приводит в движение вал токарного станка, то реактивная энергия (Q) расходуется только на создание магнитного поля.

На холостом ходу значение полезной (активной) мощности близко к нулю, а следовательно и значение косинуса фи- минимальное.

В номинальном режиме работы электродвигателя, когда к его валу подключена соответствующая наргузка, его cosφ=0,75÷0,95.

На холостом ходу- cosφ=0,08÷0,15

Поэтому и выбирают электродвигатель так, что бы он соответствовал мощности нагрузки, иначе КПД у двигателя будет низким и cosφ тоже, что приводит к излишним тратам электроэнергии.

Приведу пример: никто не будет подключать на бытовой наждак трехфазный двигатель мощностью 30 кВт если можно обойтись движком на 1-1,5кВт.

Если это сделать то такой мощный двигатель будет работать вхолостую и потреблять при этом большой ток на создание электромагнитного поля. При этом он будет зря нагружать сеть питания реактивным током, что в свою очередь приводит к увеличению потерь в проводах линии ВЛ.

Поэтому cosφ у электродвигателя должен быть максимальным.

Узнайте первым о новых материалах сайта!

Просто заполни форму:

Мощности в электродвигателе

Итак, полная мощность с единицей измерения вольт-ампер (ВА) – это комплексная величина, состоящая из активной мощности (действительной) и реактивной (мнимой). Если рассматривать полный показатель по формуле, то можно это отобразить вот так:

N=√Nа²+Nр²

Или вот так:

N=IxU.

Теперь рассмотрим составляющие первой формулы. Активная мощность действует только на активных сопротивлениях, то есть она присутствует при определенных нагрузках, а, точнее сказать, когда электрический двигатель работает. Вычисляется она вот по этой формуле:

Nа=IxUxcosφ.

Что значит активное сопротивление? Здесь необходимо понимать, что в цепях переменного тока сопротивление выше, чем в цепях постоянного тока. Это связано со многими факторами. К примеру, это вихревые токи, которые образуются в цепи, это электромагнитное поле, это близость расположения проводников и так далее. Именно поэтому сопротивление в сетях переменного тока называют активным, а в сетях постоянного тока омическим.

Теперь, что касается реактивной мощностной составляющей. Во-первых, эта величина измеряется в вольт ампер реактивный (вар). Во-вторых, это своеобразная накопительная мощность, которая накапливается в проводниковых сетях, а потом отдается обратно в сеть. Кстати, эта величина может быть положительной или отрицательной.

Причинами появления реактивной составляющей могут быть приборы, которые выдают емкостную или индуктивную нагрузку. Рассчитывают этот показатель вот по этой формуле:

Nр=IxUx sinφ.

Если рассматривать полезность реактивной мощности, то она не расходуется на прямые нужды потребителя. К примеру, в электрических двигателях она не преобразуется из электрической в механическую. И хотя полезной нагрузки эта мощность не несет, без нее не может быть осуществлена полезная работа. И все же производители стараются данный показатель уменьшить, потому что повышение активной составляющей приводит к снижению реактивной, отсюда и низкий КПД оборудования или сети.

Чем отличается постоянное напряжение от переменного

Даже люди далекие от техники знают, что при установке батареек, например, в детскую игрушку или пульт дистанционного управления, нужно соблюдать полярность – неправильная установка этих элементов питания, в лучшем случае, приведет к тому, что устройство просто не будет работать, а в худшем – выведет из строя и оборудование, и элемент питания. Поэтому на корпусах батареек всегда указывают, какой из выводов имеет положительный (обозначается значком «+»), а какой – отрицательный (обозначается значком «–») потенциал (Рисунок 1). Более того, при создании подобных источников питания их терминалы обычно делают разными, чтобы предотвратить возможность ошибочного подключения. В неформальном общении эту защиту обычно называют «защитой от дурака». Примером тому является батарейка «Крона», терминалы которой позволяют надежно подключить ответную часть разъема батареи только в правильной полярности.

Рисунок 1. Указание полярности напряжения на источниках питания
постоянного тока. (Кадр из к/ф «Матрица»).

В то же время, в типовых электрических розетках два контакта, предназначенных для протекания тока, являются абсолютно одинаковыми, что позволяет вставлять вилку в розетку двумя способами. При этом ни о какой полярности подключения при использовании бытовых электроприборов речи не идет. Это связано с тем, что напряжение в электрических розетках постоянно меняет свою величину. Если взять, например, некоторый идеализированный вольтметр, способный мгновенно проводить измерения, и определить напряжение в розетке, то окажется, что в разные моменты времени оно будет принимать совершенное разные значения (Рисунок 2). То есть в определенное время полярность напряжения в розетке будет условно положительной, в другое – условно отрицательной, а в некоторые моменты напряжение будет вообще равно нулю.

Рисунок 2. Мгновенное значение напряжения в розетке в разные моменты времени.

В русскоязычной технической литературе напряжение, способное изменить свою полярность, называют «переменным», а напряжение, полярность которого не изменяется – «постоянным». Многим начинающим специалистам очень сложно усвоить эти понятия. У обычных людей слово «постоянный» прочно связано со словом «неизменный», а, поскольку в нашем мире все меняется, то и постоянного (неизменного) напряжения не может существовать. Более того, любое напряжение питания непостоянно, например, мы же выключаем иногда радиоприемник, следовательно, его напряжение питания исчезает (изменяется), поэтому многие мои студенты уверены, что радиоприемники питаются переменным (непостоянным) напряжением.

Более точно эти термины описаны в англоязычной технической литературе. Переменному напряжению соответствует термин «Alternating Voltage», который можно дословно перевести как «чередующееся» или «перемежающееся» напряжение – напряжение, полярность которого постоянно изменяется. Аналог «постоянного» напряжения – «Direct Voltage» – можно перевести как «направленное» напряжение – напряжение, которое не меняет своей полярности.

Однако изменить устоявшуюся терминологию, зафиксированную во многих нормативных документах, уже невозможно, поэтому придется привыкать, что переменное напряжение – это напряжение постоянно (!) меняющее свою полярность и величину, а постоянное напряжение может менять свою величину, но не может менять полярность, то есть тоже не является, в абсолютном смысле слова, постоянным.

Кстати, если постоянное напряжение периодически меняет свою величину, то его часто называют пульсирующим напряжением – напряжением, величина которого изменяется с определенной частотой при неизменной полярности. Различие между постоянным и пульсирующим напряжением весьма условно, часто одно и то же напряжение одни специалисты называют постоянным, а другие – пульсирующим. Однако в курсе «Основы электропитания» не предусмотрено столь глубокое изучение этого вопроса, поэтому дальше будем считать, что существует два вида напряжений: постоянное (не меняющее полярность) и переменное (полярность которого изменяется).

Активная и реактивная мощность

Существует такое понятие как треугольник мощностей. Сам косинус — это тригонометрическая функция, которая и появилась при изучении свойств прямоугольных треугольников.

Она здорово помогает производить определенные вычисления с ними. Например, наглядно показывает отношение длин прилежащего катета (P-активная мощность) к гипотенузе (S-полная мощность).

То есть, зная угол сдвига, можно узнать, сколько активной мощности содержится в полной. Чем меньше этот угол, тем меньше реактивной составляющей находится в сети, и наоборот.

Только не путайте cos ϕ с КПД. Это разные понятия. Реактивная составляющая не расходуется, а «возвращается» на подстанцию в сеть, т.е. фактически потери ее нет. Только небольшая ее часть может тратиться на нагрев проводов.

В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.

Более подробно, с графиками, рисунками и простыми словами, без особых научных формулировок обо всем этом говорится в ролике ниже.

Примеры применения sin φ в расчетах электрических цепей

1. Расчет мощности

В электрической цепи смещенной нагрузки с фазовым сдвигом между током и напряжением, значение мощности, потребляемой нагрузкой, определяется как:

P = U × I × cos φ

где:

  • P — мощность (в ваттах)
  • U — напряжение (в вольтах)
  • I — ток (в амперах)
  • φ — угол сдвига фаз между током и напряжением (в градусах)

2. Расчет реактивной мощности

Реактивная мощность отличается от активной тем, что она не приводит к потере энергии в нагрузке, а используется для устранения реактивной составляющей тока. Ее значение определяется следующим образом:

Q = U × I × sin φ

где:

Q — реактивная мощность (в варах)

3. Расчет мощности трехфазной сети

В трехфазной сети мощность считается по следующей формуле:

P = √3 × U × I × cos φ

где:

  • P — мощность (в ваттах)
  • U — фазное напряжение (в вольтах)
  • I — фазный ток (в амперах)
  • φ — угол сдвига фаз между током и напряжением (в градусах)

4. Компенсация реактивной мощности

Использование конденсаторов в электрической цепи помогает уменьшить реактивную мощность и увеличить коэффициент мощности. Например, если требуется компенсировать реактивную мощность нагрузки в 2000 вар, то значение емкости необходимого конденсатора можно определить по формуле:

C = Q / (2πfU²)

где:

  • C — емкость конденсатора (в фарадах)
  • Q — реактивная мощность (в варах)
  • f — частота (в герцах)
  • U — напряжение (в вольтах)

Когда косинус фи равен 1?

При активной нагрузке (лампа накаливания, электрочайник) косинус фи (cosφ) равен единице, так как угол фи — ноль. При емкостной нагрузке ток будет опережать напряжение, а при индуктивной — отставать.

Какой косинус фи у светодиодных ламп?

Если, например, взять ДРД лампы, то косинус «ФИ» представлен значением 0,5, это говорит о том, что до 50% тратится просто так. Самый высокий показатель у светодиодных светильников. От 0,9 до 1.

Что такое синус фи?

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя. устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. …

В чем измеряется cos фи?

Реактивная мощность измеряется в вольт-амперах реактивных (Вар, кВАр), а общая мощность измеряется в кВА. Коэффициент мощности, он же cosφ — это отношение активной мощности к полной.

Чему равен тангенс фи?

Тангенс фи – характеристика потерь Это отношение между реактивной и активной составляющими нагрузки. При возрастании доли реактивной составляющей тангенс возрастает, в пределе стремясь к бесконечности. Тангенс угла потерь также используется в электроэнергетике, но более привычным является показатель cos(φ).

Как найти тангенс через косинус?

Тригонометрические формулы

  1. При известном синусе или косинусе числа можно найти его тангенс или котангенс: tg a = sin a/cos a.
  2. Можно найти синус числа, если известен его косинус и наоборот: sin2 a + cos2 a = 1.
  3. Найти тангенс можно через синус при известном косинусе: 1 + tg2 a = 1/cos2 a.

Как можно найти тангенс?

Представляет собой соотношение катетов прямоугольного треугольника. То есть, tg(А)=ВС/АС, где ВС – противолежащий к углу (А) катет, АС – прилежащий катет.

Как найти тангенс если известен косинус на калькуляторе?

Как найти тангенс фи если известен косинус на инженерном калькулятор? Очень нужно для расчета электрических нагрузок Возводишь косинус в квадрат и делишь 1 на полученное значение (на калькуляторе есть кнопка 1/х) . Из полученного значения вычитаешь 1 и из получившегося числа извлекаешь корень квадратный.

Как найти тангенс фи зная косинус фи формула?

Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ

Выводы

Коэффициент мощности косинус фи является важным параметром для оценки эффективности работы электрооборудования. Он показывает, насколько хорошо потребитель преобразует поступающую электрическую энергию в полезную работу.

Большая часть потребителей имеет коэффициент мощности менее 1, что говорит о наличии реактивной мощности и возможных потерь энергии. Такие потери нежелательны, поскольку приходится использовать больше электроэнергии для выполнения задачи, что приводит к увеличению затрат и негативному влиянию на окружающую среду.

Для улучшения коэффициента мощности можно применять различные методы, такие как установка компенсационных устройств, использование регулируемых дросселей или конденсаторов. Эти меры позволяют уменьшить реактивную мощность и повысить эффективность работы электрооборудования.

Важно также отметить, что особенно важно следить за коэффициентом мощности при использовании большого количества электрооборудования, так как низкий коэффициент мощности может привести к перегрузке сети и возникновению аварийных ситуаций. Использование единицы измерения «ватт» для коэффициента мощности косинус фи позволяет удобно сравнивать потребляемую мощность различных устройств и оценивать их энергоэффективность

Вместе с тем, необходимо помнить, что коэффициент мощности не является единственным показателем эффективности электрооборудования и его следует оценивать в комплексе с другими параметрами

Использование единицы измерения «ватт» для коэффициента мощности косинус фи позволяет удобно сравнивать потребляемую мощность различных устройств и оценивать их энергоэффективность. Вместе с тем, необходимо помнить, что коэффициент мощности не является единственным показателем эффективности электрооборудования и его следует оценивать в комплексе с другими параметрами.

Понравилась статья? Поделиться с друзьями:
Все на Запад
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: